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ABSTRACT

Robust operating systems are required for reliable computing. Techniques for robust-

ness evaluation of operating systems not only enhance the understanding of the reliability

of computer systems, but also provide valuable feedback to system designers. This thesis

presents results from robustness evaluation experiments on five UNIX-based operating

systems, which include Digital Equipment's OSF/1, Hewlett Packard's HP-UX, Sun Mi-

crosystems' Solaris and SunOS, and Silicon Graphics' IRIX. Three sets of experiments

were performed. The methodology for evaluation tested (1) the exception handling mech-

anism, (2) system resource management, and (3) system capacity under high workload

stress.

An exception generator was used to evaluate the exception handling mechanism of

the operating systems. Results included exit status of the exception generator and the

system state. Resource management techniques used by individual operating systems

were tested using programs designed to usurp system resources such as physical memory

and process slots. Finally, the workload stress testing evaluated the effect of the workload

on system performance by running a synthetic workload and recording the response time
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of local and remote user requests. Moderate to severe performance degradations were

observed on the systems under stress.



ACKNOWLEDGMENTS

I would like to expressmy gratitude to my thesisadvisor, ProfessorRavi K. Iyer, for

his guidanceand to Dr. Mei-Chen Hsuehfor her ideasand discussionson this subject.

I would also like to thank Digital Equipment Corporation for their support, especially

to Mike Pallonefor his very valuablesuggestions.In addition, I would like to thank our

group memberTom Kraljevic for his contributions to this work and all of my friends at

CRHC for answeringmy many questions.Finally, I would like to thank my parents for

their support and encouragement.





vi

TABLE OF CONTENTS

o

2.

3.

.

o

°

INTRODUCTION ...............................

RELATED WORK ...............................

SYSTEM PLATFORMS UNDER EVALUATION ..............

3.1 Test Configuration ............................

3.2 Operating Systems Under Evaluation ..................

3.2.1 Digital Equipment's OSF/1 ...................

3.2.2 Sun Microsystems' Solaris ....................
3.2.3 Hewlett Packard's HP-UX ....................

3.2.4 Silicon Graphics' IRIX ......................

EXCEPTION HANDLING ANALYSIS ....................

4.1 Sequential Crashme Experiment .....................

4.1.1 Crashme-induced resource monopolization ...........

4.1.2 Crashme-induced system crashes ................

4.2 Concurrent Crashme Experiment ....................

4.2.1 Experiment description ......................

4.2.2 Results ...............................

SYSTEM RESOURCE MONOPOLIZATION ................

5.1 Swap Space Monopolization .......................

5.2 Process Slots Monopolization ......................

5.3 Memory Swapping Experiment .....................

5.4 Results ...................................

WORKLOAD STRESS TESTING ......................

6.1 Local Workload ..............................

6.2 Network Workload ............................

6.3 Tests Performed ..............................

Page

5

8

8

10

10

11

11

12

13

14

15

18

19

2O

22

25

25

27

28

29

31

31

32

32



vii

6.4 Results ...................................

7. CONCLUSIONS ................................
7.1 Summary .................................
7.2 Future Work ................................

33

37
37
38

REFERENCES ................................ 40



,o,

Vlll

LIST OF TABLES

Table Page

1.1: System platforms under evaluation ...................

3.1: System information of testing platforms .................

4.1: Possible Crashme-induced conditions on testing platforms .......

4.2: System configurations for concurrent Crashme experiment ......

4.3: Numbers of killed Crashme subprocesses out of 100 ..........

4.4: Numbers of killed Crashme subprocesses out of 150 ..........

4.5: Exit status of 100 Crashme subprocesses ................

4.6: Exit status of 150 Crashme subprocesses ................

4.7: Causes of termination for Crashme subprocesses ............

5.1: Resource monopolizing conditions observed ...............

6.1: Local workload description ........................

6.2: Local response times (in seconds) on OSF/1 ..............

6.3: Remote response times (in seconds) on OSF/1 .............

6.4: Local response times (in seconds) on Solaris ..............

6.5: Remote response times (in seconds) on Solaris .............

2

9

15

20

22

22

22

23

23

29

32

33

34

34

3,5





ix

LIST OF FIGURES

Figure Page

1.1: Graphical user interface of robustness testing tools ...........

4.1: Graphical user interface of our Crashme experiment ..........

4.2: Sequential Crashme experiment ......................

4.3: Concurrent Crashme experiment .....................

5.1: Graphical user interface of our monopolization experiment .......

5.2: Memory monopolizing program ......................

3

14

16

21

26

26





1. INTRODUCTION

Robust operating systems are required for reliable computing. Techniques for robust-

ness evaluation of operating systems not only enhance the understanding of the reliability

of computer systems, but also provide valuable feedback to system designers.

UNIX operating systems are widely used in industry as well as academia. This thesis

presents results from robustness evaluation experiments oil five UNIX-based operating

systems, which include Digital Equipment's OSF/1,1 Hewlett Packard's HP-UX, Sun

Microsystems' Solaris and SunOS, and Silicon Graphics' IRIX. The system platforms

under evaluation are shown in Table 1.1.

Three sets of experiments were performed. The methodology for evaluation tested

(1) the exception handling mechanism, (2) system resource management, and (3) system

capacity under high workload stress.

tDigital changed the name of its UNIX operating system from DEC OSF/1 to Digital UNIX on
March 14, 1995.



Table 1.1: System platforms under evaluation

System model DEC 3000 SPARC 20 SPARC 2 HP 735 HP 715 SGI Indy

Vendor Digital SUN SUN Hewlett Hewlett Silicon

Equipment Packard Packard Graphics

OS type OSF/1 Solaris SunOS HP-UX HP-UX IRIX

OS version 2.1/3.0 2.3/2.4 4.1.3 9.05/10.0 9.05 5.3

First of all, an exception generator was used to evaluate the exception handling mech-

anism of the operating systems. During the experiment, the operating system had to keep

the system in a safe state by properly handling all kinds of exceptions generated by illegal

instructions, bad operands, etc. Otherwise, the machine state might be corrupted and a

system crash would occur. Results included exit status of the exception generator and

the system state. We were able to crash the HP 715 running HP-UX 9.05 and the SGI

Indy running IRIX 5.3 within 10 minutes after the testing started.

Secondly, resource management techniques used by individual operating systems were

tested using programs designed to usurp system resources such as physical memory and

process slots. In OSF/1, Solaris, SunOS, HP-UX, and SGI IRIX, a single user could

monopolize the system swap space. We also observed that process slots could be monop-

olized in Solaris, SunOS, and IRIX. In all these cases, no more processes could be started

in the system.



Figure 1.1: Graphical user interface of robustness testing tools.

A graphical user interface was implemented to perform the above two experiments.

It allows users to input testing parameters, activate the test and monitor the results.

Figure 1.1 shows this interactive interface. _

Finally, the workload stress testing evaluated the effect of the workload on svstem

performance by running a synthetic workload and recording the response time of local

and remote user requests. We stressed OSF/1 V3.0 and Solaris 2.4 with various disk I/O,

CPU, memory, and network workload mixes. Moderate to severe performance degrada-

tions were observed on the systems under stress.

To achieve maximum repeatability, all these experiments were driven by shell scripts.

Moreover, we avoided using root privileges. Instead, all experiments were conduct, ed

2The socket testing shown in the figure is not included in this thesis.
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in regular user mode. Therefore, all users are potentially affected by the vulnerability

exposed in this study.

Throughout the course of this thesis, a crash is said to have occurred if a system has

no interactive user response and also fails to service NFS requests. The NFS condition

is particularly useful, because NFS often still works when the system appears to have

hung. Two types of crashes are described in this study. One is a system hang with no

NFS response. In the other case, the system panics and dumps a memory image.

The remainder of the thesis is organized as follows. Chapter 2 summarizes the re-

lated research. Chapter 3 describes system platforms, including hardware and operating

systems under evaluation. Chapter 4 details the exception handling analysis and the

results including system crashes. Chapter 5 concentrates on the resource management

experiment and its results. Chapter 6 presents the workload stress testing, and the per-

formance degradation is evaluated. Finally, Chapter 7 summarizes the major results in

this study and suggests future work.



2. RELATED WORK

Testability and reliability issues of software have been investigated extensively. The

study in [1] overviewed the fundamental issues in reliability. The concept of testability

and its use in reliability assessment was presented in [2].

A large number of testing models and reliability models have been proposed. A

software usage model was developed in [3] to characterize the population of intended

uses of the software. Based on the software usage model, statistical testing is able to

find the failures that will occur most frequently in operational use early in the testing

cycle. In [4], three models for the behavior of software failures were proposed to predict

reliability growth by predicting failure rates and mean times to failure. The research in [5]

reviewed a number of reliability models and predicted the faults in the microcode for the

IBM 4381 and the IBM 9370 families of computer systems. In [6], two mathematical

models based on structural computer systems were investigated. Several cost related

reliability measures were also studied on operating environments including DOS and

UNIX.



A lot of software testing techniques have been developed. The empirical evidence

in [7] showed that the testing method does affect the reliability estimates. In [8], it

was argued that more experimental work in software testing was necessary in order to

classify testing techniques in such a way that is useful to the software engineer. Au-

tomatic test case generation algorithms were introduced in [9] to perform load testing

for telecommunications software systems. The reliability as a function of the degree of

system degradation experienced was also presented. The research in [10] described the

on-system data logging process and analysis methodology to measure system, product

and operating system reliability. The automated data collection process, which collects

on-system data logging information from customer sites, was developed by Digital Equip-

ment Corporation. In [11], the failures in Tandem's NonStop-UX operating system were

investigated and categorized. Both software failures from the field and failures reported

by Tandem's test center were covered in this analysis.

Fault injection has been applied in software testing. The research in [12] presented a

fault injection and monitoring environment (FINE) as a tool to study fault propagation

in the UNIX kernel. A fault propagation study for Sun Microsystems' SunOS 4.1.2 was

described in [13]. It was shown that memory faults and software faults usually have a

long latency while bus faults and CPU faults tend to crash the system immediately.

Since the advent of 64-bit architectures, UNIX vendors have worked on defining a

set of interfaces and a 64-bit C programming model for data representation. Companies

such as Silicon Graphics, Digital, and HAL Computer already have 64-bit versions of
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UNIX [14]. The study in [15]proposedboth a short and long term plan for the evolution

of the UNIX operating systemto 64-bit architectures.

This thesisshowsimportant results. It presentsthreesetsof experimentsto evaluate

the robustnessof UNIX-basedoperatingsystems.It coversissuessuchasexceptionhan-

dling ability, resourcemanagement,and performancedegradation under high workload

stress. In addition, it provides a reasonablecomparisonamong the operating systems

under evaluation. Two 64-bit system platforms, Digital and Silicon Graphics systems,

and their operating systemsarealso included. Finally, it exposesthe vulnerable aspects

of the systemsunder evaluationand offersvaluablefeedbackto the systemdesigners.
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3. SYSTEM PLATFORMS UNDER EVALUATION

3.1 Test Configuration

In this study, weevaluatedthe robustnessof five UNIX-basedoperating systemsfrom

four computer vendors. The systemplatforms under evaluation included:

• DEC 3000workstation running OSF/1 V2.1 and then OSF/1 V3.0.1

• Sun SPARCstation 20 running Solaris2.3 and then Solaris 2.4.

• Sun SPARCstation 2 running SunOS 4.1.3.

• HP 735/125 workstation running HP-UX 9.05 and then HP-UX 10.0.

• HP 715/64 workstation running HP-UX 9.05.

• SGI Indy running IRIX 5.3.

1Since the testing of DEC OSF/1 V3.0, Digital has made significant changes to many aspects of their

UNIX operating system now known as Digital UNIX. In February of 1995 they released V3.2 and as of

May 1996 are shipping a major new release of Digital UNIX V4.0. A future comparison of Digital UNIX

V4.0 against the other operating systems would be desirable to have a similar comparison of available
releases.



Table 3.1: System information of testing platforms

System model DEC 3000 SPARC 20 SPARC 2 HP 7"35 HP 715 SGI Indy

Vendor Digital SUN SUN Hewlett Hewlett Silicon

Equipment Packard Packard Graphics

CPU model RISC Super SPARC PA-RISC PA-RISC MIPS

21064 SPARC 7150 7100 4600

Clock speed 175 MHz 60 MHz 40 MHz 125 MHz 64 MHz 133 MHz

CPU word size 64 bits 32 bits 32 bits 32 bits 32 bits 64 bits

OS type OSF/1 Solaris SunOS HP-UX HP-UX IRIX

OS version 2.1/3.0 2.3/2.4 4.1.3 9.05/10.0 9.05 5.3

Primary cache 8kd/8ki 36k 16k 256kd/256ki 256k 16kd/16ki

Secondary cache 2MB 1MB N/A N/A N/A 0.5MB

Main memory 64 MB 32 MB 32 MB 256 MB 32 MB 32 MB

Table 3.1 shows detailed system information of each platform. These RISC-based

systems (with Alpha, SPARC, SuperSPARC, PA-RISC 7150, PA-RISC 7100 and MIPS

processors) are widely used both in industry and academia. They are either entry level

or mid range workstations, with processor speeds ranging from 40 to 175 MHz. Note

that the DEC 3000 system and the SGI Indy have 64-bit architectures while the others

are 32-bit systems.

The UNiX-based operating systems under evaluation include Digital Equipment's

OSF/1, Hewlett Packard's HP-UX, Sun Microsystems' Solaris, SunOS, and Silicon Graph-

ics' IRIX. In the progress of this study, we upgraded some operating systems with their

latest versions available at the time of testing.



10

3.2 Operating SystemsUnder Evaluation

All the operating systemsweevaluated,exceptSunOS4.1.3,are basedon SystemV

Release4,_ which hasgainedbroad industry acceptanceasthe standard UNIX environ-

ment. Eachof the operating systemsis briefly describedin the following subsections.

3.2.1 Digital Equipment's OSF/1

The DEC OSF/1 Operating System V3.0 is a 64-bit kernel architecture basedon

CarnegieMellon University's Much V2.5 kerneldesignwith componentsfrom Berkeley

SoftwareDistribution (BSD) 4.3and4.4,UNIX SystemV, andothersources.OSF/1 V3.0

supports for symmetrical multiprocessing (SMP), which allows multiple threads, from the

same or different tasks, to run concurrently on different processors. OSF/1 V3.0 is quali-

fied on 12 CPUs with no architecture limits. Processor affinity, the ability to tie a process

to a processor is also supported. 3

2UNIX System V Release 4 (SVR4) is a UNIX standard which combines the best features of System V,

BSD, XENIX, and SunOS.

3Digital has added the following SMP functionality to their Digital UNIX V3.2 release:

• Multiple threads from the same task or different tasks can be run concurrently on different pro-
cessors.

• Unattended Reboot - On a hard failure of a non-boot processor, the OS will tag the failing CPU

and automatically reboot the system, without enabling the defective CPU.

• Start/Stop CPU - Ability to stop/start a specified non-boot processor.

• Processor Sets - Ability to dedicate a process, or set of processes, to a specific processor or set of

processors. Processes sets can also be used to partition the available processors among a set of
users.
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3.2.2 Sun Microsystems' Solaris

While SunOS 4 is derived from Berkeley's UNIX (BSD), Solaris 2.x uses a kernel

based on UNIX System V Release 4.0 (SVR4). Solaris 2.x is designed to support multi-

processing (MP) and multithreaded (MT) applications, affording users the advantages of

MP/MT performance gains on desktop and server systems. Multithreading and multipro-

cessing boosts performance levels for compute-intensive and I/O-intensive applications

such as multimedia, graphics, and file service.

3.2.3 Hewlett Packard's HP-UX

Hewlett Packards UNIX Operating System or HP-UX is based on both System V and

BSD. HP-UX also supports symmetric multiproeessing, providing scaling of application

performance across multiple processors using a single version of the operating system.

Core system configuration is conducted with System Administration Manager (SAM).

SAM allows the administrator to perform all major administrative functions using an

intuitive graphical user interface that leads the administrator through the choices in a

given task.

HP-UX 10.0 has additional reliability features. It protects data integrity with a

journaled file system, VxFS (the Veritas file system) [16]. Compared to the BSD 4.2

HFS and NFS, VxFS has superior data integrity, recovery, and performance. It also

provides resilience to memory faults. The diagnostic system and the operating syst_m

can mark bad pages and then avoM using them, therefore preventing system panics [17].
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3.2.4 Silicon Graphics' IRIX

The operating systemincludedwith SGI workstations is their versionof UNIX, IRIX.

IRIX is a mix of AT&T SystemV, Release4, and BSD. IRIX 5.3 is upwardly compatible,

providing binary compatibility with applicationsdevelopedunder IRIX 4 and 5. IRIX 5.3

providesnew featuresand enhancedperformance,including parallelizedTCP/IP, better

virtual memory performance,and Caching File System(CFS) support, which useslocal

disk to cacheremote data, reducing network traffic, speedingup application response

time, and allowing useof smaller local disks.
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4. EXCEPTION HANDLING ANALYSIS

This chapter describesa set of experimentswhich were performedbasedon the ex-

ception generator Crashme [18]. The purpose was to evaluate the exception handling

mechanism of each testing platform. Specifically, we invoked single or multiple calls to

Crashme in each system and let Crashme run for hours. During the experiment, the

operating system had to keep the system in a safe state by properly handling all kinds

of exceptions generated by illegal instructions, bad operands, etc. Otherwise, the ma-

chine state might be corrupted and a crash could occur. Figure 4.1 shows our interactive

graphic interface, which allows users to input Crashme arguments and displays OUtl)ut

after the experiment completes.

According to our observations, Crashme could monopolize certain system resources

and even crash the system. Table 4.1 summarized the major results of this experiment. In

particular, Crashme crashed the HP 715 running HP-UX 9.05 and the SGI Indy running

IRIX 5.3 numerous times within 10 minutes after testing started. A system crash also

occurred on the DEC 3000 running OSF/1 V3.0 in deferred swapping inode. On the
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Figure 4.1: Graphical user interfaceof our Crashmeexperiment.

other hand, we did not experienceany crashesin the HP 735 running HP-UX 10.0, nor

in the SPARC 20 running Solaris 2.4. In addition to crashes, Crashme also succeeded in

monopolizing certain system resources in the OSF/1 and Solaris systems.

4.1 Sequential Crashme Experiment

We invoked Crashme subprocesses sequentially on the DEC 3000 running OSF/1 V3.0,

the HP 735 running HP-UX 10.0 and the SPARC 20 running Solaris 2.4 for 24 hours

with the following arguments:

crashme +2000 111 200 24:00:00 2

Figure 4.2 shows how the arguments function during the sequential Crashme run,

whose subprocesses were forked and executed in sequence. In particular, thc above
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Table 4.1: PossibleCrashme-inducedconditions on testing platforms

Observation OSF/1 3.0 OSF/1 3.0 Solaris HP-UX HP-UX SGI IRIX

deferred immediate 2.3/2.4 9.05 10.0 5.3

Swap space was crash crash

monopolized v / x/ x/ occurred occurred

first first

Process slots swap space crash crash

were monopolized limit occurred occurred

reached first first first

NFS was

disrupted _/ x/ x/

System crashed

(no NFS, no I/O) _/ v/ x/

Crashme instance generates 2,000 bytes of pseudo-random data and executes them as

a sequence of instructions. A signal handler is set up to catch most of the machine

exceptions generated by the illegal instructions, bad operands, etc. After this sequence

of instructions is executed 200 times, the random seed is incremented to try another

round of randomness. Eventually a random instruction may corrupt the program or the

machine state so that the program must halt. System crash may occur in the middle of

the experiment. Otherwise, the Crashme subprocesses will be terminated after 24 hours

of running. Using a verbose level 2 will print out brief summary information.

4.1.1 Crashme-induced resource monopolization

For both Solaris and OSF/1 systems, Crashme monopolized the system swap space.

Even though no additional processes could be started oil tile Solaris system, NFS con-

tinued to respond. According to our definition, Solaris system did not crash. As for
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Usage

while

}

crashme <nbytes> <srand> <ntrys> [time] [verboseness]

<nbytes> : number of random bytes to be generated.

<srand> : random seed.

<ntrys> : number of iterations.

[time] : duration for the experiment.

[verboseness] : verboseness level.

( experiment time < [time] ){

generate <nbytes> of pseudo-random data using random seed <srand>;

for i = I to <ntrys> {

Execute the data sequence as an instruction stream and

trigger exceptions continuously;

}

<srand> = <srand> + i;

Figure 4.2: Sequential Crashme experiment.

the OSF/1 system, both immediate (guaranteed) and deferred (overcommit) swapping

modes were tested. In the immediate swapping mode, Crashme consumed the entire swap

space, and no new processes could be started. In the deferred swapping case, Crashme

actually crashed the OSF/1 system. The details are described respectively as follows.

Sun Solaris Having Crashme run for more than 10 hours, the entire system swap space

was consumed by the subprocesses spawned by Crashme. The system refused to

take any more processes. No other users, including root, could function, and a

reboot was necessary. However, NFS requests were still serviced promptly. Hence

we did not consider a crash to have occurred.
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When the specifiedtime limit wasreached,the backgroundCrashmesubprocesses

werenot properly cleanedup and continued to monopolize the memory. The fact

the main processfailed to kill its subprocessesmight be due to lack of swap space.

The swap spacemonopolization by Crashme was very similar to the result of the

memory monopolization experiment, which is described in Section 5.1. Vendors are

reluctant to impose memory or swap space limits on individual processes and thus

limit the flexibility of their systems. Rather, a vendor's response to such memory

or swap space contention would probably be the suggestion to simply buy more

memory or disk.

DEC OSF/1 Crashme experiment was performed twice on the OSF/1 system, once in

the immediate swapping mode and the other in the deferred mode. tn OSF/1, the

two swapping modes operate as follows: if the immediate mode is used, swap space

is allocated when modifiable virtual address space is created. If the deferred mode

is used, swap space is not allocated until the system needs to write a modified

virtual page to swap space.

For the immediate swapping case, Crashme was able to consume all the swap

space after about 4 hours. However, NFS service was never disturbed. For the

deferred swapping case, Crashme did interrupt NFS and crashed the system. We

also observed the same problem of Crashme improperly terminating child processes

on the OSF/1 system as on the Solaris system.
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4.1.2 Crashme-induced system crashes

Crashme crashed the HP 715 running HP-UX 9.05 and the SGI Indy running IRIX 5.3

a number of times within 10 minutes with any of the following arbitrarily picked Crashme

arguments.

crashme +2000 l ll 200 02:00:00 3

craslme +1000 777 200 02:00:00 3

craslme +1462 654 123 02:00:00 3

We also succeeded in crashing the HP 735 running HP-UX 9.05 within an hour. After

the operating system on HP 735 was upgraded to HP-UX 10.0, however, Crashme could

no longer recreate a system crash. The detailed results are described as follows.

SGI IRIX 5.3 Each of the above Crashme instances were run several times on the

SGI Indy running IRIX 5.3. In less than 5 minutes, the Indy did not respond to

interactive commands and stopped servicing NFS requests. Accordingly a crash

was considered to have occurred. The system also failed to respond to "ping". A

reboot was required. However, the system did not panic, hence no memory image

was dumped.

The log file showed that the final Crashme subprocess arguments were 2000 511 200,

and we verified numerous times that invoking the following could crash the IRIX 5.3

system in one second.

crashme +2000 511 200 1 2
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HP-UX 9.05 The same Crashme runs also crashed the HP 715 running HP-UX 9.05.

In less than 10 minutes of running , the system panicked, dumped the memory

image, and then self-rebooted. The HP 735 running the same version of HP-UX

was also crashed in the same manner within an hour of running.

HP-UX 10.0 After the operating system on the HP 735 was upgraded to HP-UX 10.0,

the experiment was repeated. No crashes occurred. The above test runs could not

crash the system nor monopolize any system resources. However, many Crashme

subprocesses were killed by the operating system due to a stack 9rowth failure.

Therefore, Crashme spent more time forking subprocesses, computing the random

bytes and less time triggering exceptions. This explains why Crashme was less

effective when running on HP-UX 10.0.

In order to better understand this particular phenomenon, another Crashme ex-

periment was performed to generate all the subprocesses at once and let them run

concurrently. Abnormal terminations of these subprocesses were also analyzed.

The experiment and analysis are described in the following subsection.

4.2 Concurrent Crashme Experiment

As previously noted, HP-UX 10.0 killed many subprocesses in the sequential Crashme

experiments. It was our concern that killing user processes to avoid system-wide impact

might not be good enough for certain applications such as banking. In addition to

crashes, it is also important to understand how each of the operating systems handled
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Table 4.2: Systemconfigurationsfor concurrentCrashmeexperiment

HP-UX 10.0 Solaris2.4

MAXUPROC(max. hum of userproc) 200 200

MAXSSIZE (max. user stack size) 8MB 8MB

the exceptions. Since SGI IRIX 5.3 and HP-UX 9.05 have already been shown highly

vulnerable to Crashme, the following experiment was performed only on HP-UX 10.0 and

Solaris 2.4. We did not show the results of this experiment on OSF/1 because Digital

has added the ability to set user resource limits to Digital UNIX V4.0 (unavailable at

our time of testing) which provides the ability to set a limit on the number of processes

and the amount of memory that can be consumed by a single user.

4.2.1 Experiment description

As shown in Table 4.2, the systems configurations were modified such that both

system platforms are comparable. In particular, the maximum number of processes per

user, MAXUPROC, was raised to 200 on each of the operating systems. The maximum stack

size, MAXSSIZE, was configured to be 8 MBytes on both systems.

Firstly, 100 concurrent Crashme subprocesses were generated by using the following

arguments:

crashme +1000.4 777 200 I00 2

As shown in Figure 4.3, the above Crashme instance generated all the subprocesses at

once and let them run concurrently in the background. Crashme subprocesses terminated
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Usage : crashme <nbytes> <srand> <ntrys> [nsub] [verboseness]

<nbytes> : number of random bytes to be generated.

<srand> : random seed.

<ntrys> : number of iterations.

[nsub] : number of subprocesses to be forked.

[verboseness] : verboseness level.

for i = I to [nsub] {

fork a subprocess;

}

/* Generate [nsub] concurrent subprocesses */

Each subprocess in parallel do {

generate <nbytes> of pseudo-random data using random seed <srand>;

for j = i to <ntrys> {

Execute the data sequence as an instruction stream and

trigger exceptions continuously;

}

<srand> = <srand> + I;

Figure 4.3: Concurrent Crashme experiment.

either voluntarily through an exit system call or involuntarily as a result of a signah

In either case, an exit status was returned to the parent Crashme process through the

wait system call [19]. By logging and analyzing the error messages and the exit status

of subprocesses, we could measure how many subprocesses were killed by the operating

system.
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Table 4.3: Numbers of killed Crashme subprocesses out of 100

HP-UX 10.0 Solaris 2.4

Number of killed subprocesses 3 0

Percentage 3% 0%

Table 4.4: Numbers of killed Crashme subprocesses out of 150

Number of killed subprocesses

Percentage

I HP-UX 10.0 Solaris 2.4

5 0

3.3% 0%

4.2.2 Results

Table 4.3 summarizes the major results in this experiment. In specific, 3 out of 100

Crashme subprocesses were killed by HP-UX 10.0 because of a stack growth failure. On

the other hand, Solaris 2.4 did not kill any Crashme subprocesses in this experiment.

A similar experiment was performed on each platform to generate 150 subprocesses.

The purpose was to see if the systems behaved differently with an increased number

of subprocesses. Table 4.4 shows the result of the 150-subprocess experiment. The

Table 4.5: Exit status of 100 Crashme subprocesses

HP-UX 10.0 Solaris 2.4

Exit status Numofsubproc Exit status Numofsubproc

1536 8 1792 17

10 20 139 83

11 32

4 40
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Table 4.6: Exit status of 150 Crashme subprocesses

HP-UX 10.0 Solaris 2.4

Exit status Numofsubproc Exit status Numofsubproe

1536 12 1792 27

10 29 139 123

Ii 53

4 56

Table 4.7: Causes of termination for Crashme subprocesses

HP-UX 10.0 Solaris 2.4

Exit status Cause Exit status Cause

1536 normal exit 1792 normal exit

10 bus error 139 seg. violation

SIGBUS SIGSEGV

11 seg. "dolation

SIGSEGV

4 illegal instruction
SIGILL

percentages of killed subprocess were very close to the numbers shown in Table 4.3.

No significant difference was observed between these two experiments in terms of the

operating system's exceptions handling.

In addition, Table 4.5 and Table 4.6 summarize the exit status values of each of the

Crashme subprocesses. The status value can be used to differentiate between normally

exited processes and terminated processes. This is accomplished using the macros defined

in sys/wait .h with the status value as an argument.
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Table 4.7 summarizes the causes of termination of Crashme subprocesses. In partic-

ular, Solaris 2.4 had a normal process exit 17 times in the 100-subprocess experiment

while HP-UX 10.0 had 8 times. In addition to normal exit, Crashme subprocesses might

be terminated due to the receipt of signal which was not caught. For instance, 32 out of

100 subprocesses were terminated by signal SIGSEGV (segmentation violation) in HP-UX.

Similar cases happened 83 times in Solaris.
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5. SYSTEM RESOURCE MONOPOLIZATION

This chapter describes our attempts to have a single user monopolize the system

resources including swap space, virtual memory, and process slots. The systems under

test include the DEC 3000 running OSF/1 V3.0, the Sun SPARC 20 running Solaris 2.4,

the Sun SPARC 2 running SunOS 4.1.3, the HP 715/64 running HP-UX 9.05, and the

SGI Indy running IRIX 5.3 systems.

Figure 5.1 shows our interactive graphic interface, which allows users to either con-

sume all available memory or available process slots. Each monopolization experiment is

described in the following sections.

5.1 Swap Space Monopolization

Allocating all the available memory may leave the system with no swap space. The

simple program given in Figure 5.2 is capable of taking up to 1024 MBytes of the system's

virtual memory.
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Figure 5.1: Graphical user interface of our monopolization experiment.

memSize = 512.1024.1024;

do {

buffer = (char *) malloc(memSize);

memSize /=2;

} while (memSize>=l);

while (1)

{ /* hold the memory and keep idle */

}

Figure 5.2: Memory monopolizing program.



27

In OSF/1 V3.0, HP-UX 9.05, Solaris 2.3/2.4 ,SunOS 4.1.3 and IRIX 5.3, our program

could allocate all the memory. After that, no new processes could be started in the

system due to lack of swap space. A malicious use of this program can idle the whole

system. Even a system administrator cannot kill this program because a "ps" to get the

program's pid will also be blocked. However, vendors have generally chosen not to place

a bound on the memory usage of a process in order to retain maximum flexibility, as

discussed in Section 4.1.1.

5.2 Process Slots Monopolization

In addition to system swap space, a user can also monopolize process slots on some

platforms. The following script was used to monopolize all the available process slots left

in each of the system platforms.

#! /bin/csh

runme

runme

The shell script runme calls itself until the number of processes reaches the limit. In

OSF/1, one user can run by default at most 64 processes concurrently. A monopolization

of the process slots is not possible. In Solaris, however, one can run up to about 465

processes - the total number of process slots in the system. After that, the OS does

not allow any user to start new processes. Like the memory monopolizing program,

this simple script can potentially idle the whole system. The system rccow, rcd aft_u wc
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user-interrupted (Ctrl-C) the program. Similar monopolizations were also observed in

the SunOS and SGI IRIX system.

In the SunOS 4.1.3 source code file conf.common/param.c, the maximum number

of processes per user, Mt,XUPRC, is defined as maximum number of processes allowed in

the system minus five (NPROC - 5). This parameter is used to control forking. Since

the system background jobs and daemons use more than 5 process slots, it is possible

for a user to use the rest of process slots. In Solaris, a similar definition is likely used.

For OSF/1, however, the default value of MAXUP_C is 64, and such monopolization is not

possible without changing this parameter.

In HP-UX, a super user can run SAM (System Administration Manager) to modify

MAXUP_0C (maximum number of processes per user) in the kernel configuration. Other-

wise a user cannot monopolize all the process slots in the normal situation.

5.3 Memory Swapping Experiment

In this experiment, we managed to create page faults and forced high memory swap-

ping activity. A 100 MB array was allocated and randomly accessed. Each access of the

array element not resident in current memory pages caused a page fault. Continuous

accessing the array at random locations would force paging activity and lots of cache

flushes.

In the deferred swapping mode of OSF/1, more than one such memory-swapping

process could be started. Running more than two such processes concurrently could
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cause a crash (no interactive response and no NFS response). In the immediate swapping

mode of OSF/1 and other platforms, the experiment showed significant performance

degradation, but no crash occurred.

Observation

Table 5.1: Resource monopolizing conditions observed

OSF/1 OSF/1 Solaris SunOS HP-UX
deferred immediate

SGI IRIX

Memory monopolization experiment

memory was

monopolized _/ x/ x/ _ v / _/

NFS was disrupted

Process slot monopolization experiment

process slots

were monopolized v / _/ v/

NFS was disrupted

Memory swapping experiment

NFS was disrupted v /

System crashed _/

5.4 Results

Table 5.1 summarizes the results of the resource limitation experiments and meinory-

swapping experiment under all operating systems. On OSF/1, both immediate and

deferred modes for swap space allocation were tested. One single user can monopolize

the memory in either mode. Although there was a warning in immediate mode when
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the freeswap spacewasbelow 10percent,wewere still able to allocate all the memory,

blocking any new processes.1

1Digital has added the ability to set user resource limits to Digital UNIX V4.0 (unavailable at our

time of testing) which provides the ability to set a limit oil the number of processes and tile amount of

memory that can be consumed by a single user.
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6. WORKLOAD STRESS TESTING

This chapter presents our evaluation of the system capability for the DEC 3000 run-

ning OSF/1 V2.1 and the Sun SPARC 20 running Solaris 2.3. We conducted a set of

tests which stressed each system with a high workload. The tests used a synthesized

workload which was composed of disk I/O, CPU, memory and network workload.

We refer to the disk I/O, CPU and memory portions collectively as the local workload.

In this experiment, the response times to typical interactive commands were measured

under seven different local workload and five different network workload. Moderate to

severe performance degradations were observed on each system.

6.1 Local Workload

The local workload was produced by a synthetic workload generator [20], which al-

lows its user to specify the desired workload. The workload was generated by calling

one of three work functions: an I/O-intensive function, a memory-intensive function, or

a CPU-intensive function. Tile sequence of workload functions was randomly chosen.
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Table 6.1: Local workload description

LOAD P[CPU] P[MEM] P[I/O]
0

0

1

0.33

0.2

0.2

0.6

0

I

0

0.33

0.2

0.6

0.2

I

0

0

0.33

0.6

0.2

0.2

P[FN] is the probability that function FN will be the next function chosen.

The frequency of each function type was specified before the workload started. Table 6.1

summarizes each of the local background workload probability distributions in the ex-

periment.

6.2 Network Workload

The remote workload consisted of client machines each running a remote-net-stress

script. To generate network activity, the script copied data from an NFS-mounted file

system on the stressed machine. In this experiment, the remote workload was varied by

stepping through the number of clients (0-4) requesting data.

6.3 Tests Performed

We repeatedly timed two typical interactive commands to obtain a performance mea-

sure for the target system. The locally timed command was a "grep" of 200 files (for
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Table 6.2: Local responsetimes (in seconds)on OSF/1

LOCAL NET0 NET1 NET2 NET3 NET4

WORKLOAD 0 clients 1 client 2 clients 3 clients 4 clients

34.72

14.27

13.46

23.54

31.59

20.38

18.98

38.11

18.26

16.95

22.65

31.80

22.42

20.38

38.79

23.15

21.22

25.53

30.28

25.72

24.57

41.79

29.49

28.87

32.29

35.50

32.84

32.43

49.31

39.79

32.00

40.91

42.85

42.50

40.27

See Table 6.1 for load explanation.

a total of 20 MB of data). The remotely timed command was an "ls" of a user's home

directory mounted on a network file server's disk.

6.4 Results

The performance information collected is summarized in Tables 6.2 - 6.5. In par-

ticular, Tables 6.2 and 6.3 provide local and remote execution times for the DEC 3000

system. Tables 6.4 and 6.5 provide equivalent information for the Solaris SPARC 20

system. The enormous performance difference between the two systems is evident from

the execution times in the tables.

As expected, the data shows that increasing the network workload generally raises exe-

cution time. There are some singularities, however, particularly in Table 6.5 (Load 1/NET 2,

for example). The values that stand out could be the result of external users (we did not

have an isolated system) using the network.



34

Table 6.3: Remoteresponsetimes (in seconds)on OSF/1

LOCAL NET0 NET1 NET2 NET3 NET4

WORKLOAD 0 clients 1 client 2 clients 3 clients 4 clients

1

2

3

4

5

6

7

4.61

2.31

2.15

3.57

4.54

3.32

3.47

4.85

2.34

2.35

3.36

4.70

3.65

3.90

5.09

2.52

2.51

3.45

4.00

3.38

3.91

6.00

3.70

3.69

4.33

4.84

4.69

4.76

8.35

6.12

4.61

6.39

6.40

6.35

6.19

See Table 6.1 for load explanation.

Table 6.4: Local response times (in seconds) on Solaris

LOCAL NET0 NET1 NET2 NET3 NET4

WORKLOAD 0 clients 1 client 2 clients 3 clients 4 clients

1

2

3

4

5

6

7

71.52

134.03

134.10

133.67

133.83

134.27

132.70

67.86

154.40

149.50

142.10

122.60

150.20

141.53

74.02

160.45

151.03

150.17

142.03

155.07

148.10

79.14

168.45

155.25

158.80

149.40

159.60

150.85

79.86

167.60

158.55

162.30

161.85

171.10

162.75

See Table 6.1 for load explanation.
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Table 6.5: Remoteresponsetimes (in seconds)on Solaris

LOCAL NET0 NET1 NET2 NET3 NET4

WORKLOAD 0 clients 1 client 2 clients 3 clients 4 clients

1

2

3

4

5

6

7

4.90

7.57

6.96

7.31

7.73

7.72

7.53

11.01

8.69

7.96

8.93

9.70

8.82

9.06

9.36

9.16

7.94

9.01

10.08

9.19

8.24

11.42

10.64

9.09

10.04

9.33

9.98

12.95

See Table 6.1 for load explanation.

22.21

11.49

9.85

11.04

10.29

I0.92

I0.43

We observed that in the DEC 3000 system local as well as remote response times

increased when the local workload was I/O bound. (14.27 seconds versus 34.72 seconds

in Table 6.2, Load 2 versus Load 1, with zero clients). One possible reason for a CPU or

memory workload's lowering of the response time was the DEC's available computation

bandwidth. Grep might not utilize all of the available CPU cycles, and a CPU background

workload could use the otherwise wasted CPU cycles. An I/O background workload, on

the other hand, would compete with grep directly.

In contrast with the DEC 3000, the SPARC 20 tests showed response times decrcas_:d

for an I/O bound local workload. An reason for this behavior discrepancy might be

that grep on the SPARC system actually needed most of the CPU cycles. Competing

CPU-intensive processes might delay grep more than competing I/O processes if grep did

not get enough CPU cycles. Overall, we observed a much larger performance differ¢mce
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between the SPARC and DEC systemsfor CPU-intensive background workload cases

than for I/O-intensive backgroundworkload cases.
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7. CONCLUSIONS

7.1 Summary

UNIX hasbeenimplementedon a wider rangeof machinesthan any other operating

system. With the enhancedcapabilitiesand complexity of today's UNIX systems,there

is a need to clearly understand their reliability. In this study, we conducted three sets

of experimentsto evaluatethe robustnessof five UNIX-basedoperating systems,which

included DEC OSF/1, HP-UX, Sun Solaris,SunOS,and SGI IRIX. Theseexperiments

included exceptionhandlinganalysis,resourcemonopolizationexperiment,and workload

stresstesting.

An extensivesetof Crashmerunshavebeenperformedoneachof the systemplatforms

under evaluation. We wereable to crash the HP 715 running HP-UX 9.05and the SGI

Indy running IRIX 5.3 numeroustimes within 10minutes after the testing started. We

alsoexperienceda crashof the DEC 3000running OSF/1 V3.0 in the deferredswapping

mode. No crashesoccurredin the HP 735 running HP-UX 10.0,nor in the SPA12C20
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running Solaris 2.4. In addition to crashes,we alsoobservedthat Crashmesucceededin

monopolizing certain system resourcesin the DEC 3000running OSF/1 V3.0 and the

SPARC 20 running Solaris 2.4. It wasalso shownthat Solaris 2.4 could handle a large

number of concurrent Crashme subprocesses, while HP-UX 10.0 killed many subprocesses

to keep the system alive.

Our resource monopolization experiments used programs designed to usurp system

resources, preventing users from doing work. In OSF/1 V3.0, Solaris 2.4, SunOS 4.1.3,

HP-UX 9.05, and IRIX 5.3, a single user could monopolize the swap space. We also

observed that process slots could be monopolized in Solaris, SunOS, and IRIX. In all

these cases, no more processes could be started in the system.

Finally, the workload stress testing in DEC OSF/1 V3.0 and Solaris 2.4 showed the

execution times of typical interactive commands in OSF/1 V3.0 and Solaris 2.4 under

various disk I/O, CPU, memory, and network workload mixes. Moderate to severe per-

formance degradations were observed.

7.2 Future Work

Our results show that Crashme could crash an HP 715 running HP-UX 9.05, an SGI

Indy running IRIX 5.3, and a DEC 3000 running OSF/1 V3.0 in deferred swapping mode.

However, it is unclear what kind of exceptions actually crashed the systems. In order to

identify the cause of a crash, we need to develop a diagnostic tool to examine the crash
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panic messageand the system'smemory image. SomeUNIX systemsprovide tools, such

as icrash on SGI IRIX, to read the memory image file.

Usually an operating system handles exceptions as user processes execute in the sys-

tem. By combining our exception handling experiment and workload stress testing, we

are able to stress the system more. To implement this testing environment, we can gen-

erate disk I/O, CPU and memory workload activity in the background using a synthetic

workload generator, and then apply exception handling test by running Crashme pro-

gram. While the tested operating system is handling the synthetic workload and the

exceptions triggered by Crashme, we measure the system's response time to local and

remote interactive commands and compute the performance degradation. If the system

crashes in the experiment, the panic message and memory image are then examined to

identify the cause.
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